Технология сетей Fast Ethernet и 100VG-AnyLAN

Технология сетей Fast Ethernet и 100VG-AnyLAN



Спецификации физического уровня Fast Ethernet

Для технологии Fast Ethernet разработаны различные варианты физического уровня, отличающиеся не только типом кабеля и электрическими параметрами импульсов, как это сделано в технологии 10 Мб/с Ethernet, но и способом кодирования сигналов, и количеством используемых в кабеле проводников. Поэтому физический уровень Fast Ethernet имеет более сложную структуру, чем классический Ethernet.

Физический уровень включает три элемента:

Уровень согласования нужен для того, чтобы уровень MAC, рассчитанный на интерфейс AUI, смог работать с физическим уровнем через интерфейс МII.
Устройство физического уровня (PHY) состоит, в свою очередь, из нескольких подуровней :

Интерфейс МП поддерживает независимый от физической среды способ обмена данными между подуровнем MAC и подуровнем PHY. Этот интерфейс аналогичен по назначению интерфейсу AUI классического Ethernet за исключением того, что интерфейс AUI располагался между подуровнем физического кодирования сигнала (для любых вариантов кабеля использовался одинаковый метод физического кодирования - манчестерский код) и подуровнем физического присоединения к среде, а интерфейс МИ располагается между подуровнем MAC и подуровнями кодирования сигнала, которых в стандарте Fast Ethernet три - FX, ТХ и Т4

Физический уровень 100Base-FX

Спецификация 100Base-FX (многомодовое оптоволокно, два волокна) определяет работу протокола Fast Ethernet по многомодовому оптоволокну в полудуплексном и полнодуплексном режимах на основе схемы кодирования FDDI. Как и в стандарте FDDI, каждый узел соединяется с сетью двумя оптическими волокнами, идущими от приемника (Rx) и от передатчика (Тx).
Cпецификации 100Base-FX и 100Base-TX во многом схожи и мы это увидим.
В стандарте Fast Ethernet определен метод кодирования - 4В/5В, в отличае от Ethernet, который при скорости передачи 10 Мбит/с, использует манчестерское кодирование для представления данных при передаче по кабелю. Этот метод уже показал свою эффективность в стандарте FDDI и без изменений перенесен в спецификацию 100Base-FX/TX. При этом методе каждые 4 бита данных подуровня MAC (называемых символами) представляются 5 битами. Избыточный бит позволяет применить потенциальные коды при представлении каждого из пяти битов в виде электрических или оптических импульсов. Существование запрещенных комбинаций символов позволяет отбраковывать ошибочные символы, что повышает устойчивость работы сетей с 100Base-FX и 100Base-TX.
Для отделения кадра Ethernet от символов Idle используется комбинация символов Start Delimiter - пара символов J (11000) и К (10001) кода 4В/5В, а после завершения кадра перед первым символом Idle вставляется символ Т.

После преобразования 4-битовых порций кодов MAC в 5-битовые порции физического уровня их необходимо представить в виде оптических или электрических сигналов в кабеле, соединяющем узлы сети. Спецификации 100Base-FX и 100Base-TX используют для этого различные методы физического кодирования - NRZI и MLT-3 соответственно (как и в технологии FDDI при работе через оптоволокно и витую пару).

Физический уровень 100Base-TX

В качестве среды передачи данных спецификация 100Base-TX (витая пара UTP Cat 5 или STP Туре 1, две пары) использует кабель UTP категории 5 или кабель STP Туре 1. Максимальная длина кабеля в обоих случаях - 100 м.
Основные отличия от спецификации 100Base-FX - использование метода MLT-3 для передачи сигналов 5-битовых порций кода 4В/5В по витой паре, а также наличие функции автопереговоров (Auto-negotiation) для выбора режима работы порта. Схема автопереговоров позволяет двум соединенным физически устройствам, которые поддерживают несколько стандартов физического уровня, отличающихся битовой скоростью и количеством витых пар, выбрать наиболее выгодный режим работы. Обычно процедура автопереговоров происходит при подсоединении сетевого адаптера, который может работать на скоростях 10 и 100 Мбит/с, к концентратору или коммутатору.
Описанная ниже схема автопереговоров сегодня является стандартом технологии 100Base-T. До этого производители применяли собственные схемы автоматического определения скорости работы взаимодействующих портов, которые не были совместимы. Принятую в качестве стандарта схему автопереговоров предложила первоначально компания National Semiconductor под названием NWay.
Всего в настоящее время определено 5 различных режимов работы, которые могут поддерживать устройства 100Base-TX или 100Base-T4 на витых парах:

Режим 10Base-T имеет самый низкий приоритет при переговорном процессе, а полнодуплексный режим 100Base-T4 - самый высокий. Переговорный процесс происходит при включении питания устройства, а также может быть инициирован в любой момент модулем управления устройства.
Устройство, начавшее процесс автопереговоров, посылает своему партнеру пачку специальных импульсов Fast Link Pulse burst (FLP), в которой содержится 8-битное слово, кодирующее предлагаемый режим взаимодействия, начиная с самого приоритетного, поддерживаемого данным узлом.
Если узел-партнер поддерживает функцию автопереговоров и также может поддерживать предложенный режим, он отвечает пачкой импульсов FLP, в которой подтверждает данный режим, и на этом переговоры заканчиваются. Если же узел-партнер может поддерживать менее приоритетный режим, то он указывает его в ответе, и этот режим выбирается в качестве рабочего. Таким образом, всегда выбирается наиболее приоритетный общий режим узлов.
Узел, который поддерживает только технологию 10Base-T, каждые 16 мс посылает манчестерские импульсы для проверки целостности линии, связывающей его с соседним узлом. Такой узел не понимает запрос FLP, который делает ему узел с функцией автопереговоров, и продолжает слать свои импульсы. Узел, получивший в ответ на запрос FLP только импульсы проверки целостности линии, понимает, что его партнер может работать только по стандарту 10Base-T, и устанавливает этот режим работы и для себя.

<<Назад Вперед>>

автор реферата
| ©2005 Moscow Polyakov Alexander Vladimirovich

Сайт управляется системой uCoz